3 resultados para Cell Cycle Proteins

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cdc25 is a mitosis triggering phosphatase in Schizosaccharomyces pombe, and is transported in to the nucleus during G2 phase by the importin-β protein Sal3. Cdc25 triggers mitosis and cell division by dephosphorylating tyrosine 15 of Cdc2. In sal3 mutants, Cdc25 is not transported into the nucleus and the cells halt in G2. The purpose of this study is to use a two-hybrid system to determine the nature of the relationship between Sal3 and Cdc25. Previous research has failed to detect any interaction between the two proteins, but specific modifications were made to the two-hybrid system in this study including the separation of Sal3 into its two binding domains, the addition of fluorescent tags to the fusion protein, and the reversal of plasmids in the fusion proteins. Unique PCR primers were successfully designed, based on a multiple alignment of Sal3 and its homologues, to separate Sal3 into its two domains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vascular smooth muscle cell migration is a significant contributor to many aspects of heart disease, and specifically atherosclerosis. Tissue damage in the arteries can result in the formation of a fatty streak. Smooth muscle cells (SMC) can then migrate to this site to form a fibrous cap, stabilizing the fatty plaque. Since cardiovascular disease is the leading cause of death in developed countries, this function of SMC is an essential area of study. The formation of lamellipodia and circular dorsal ruffles were studied in this project as indicators that cell migration is occurring. The roles of the proteins p53, Rac, caldesmon and PTEN were investigated with regards to these actin-based structures. The tumour suppressor p53 is often reported to cause apoptosis, senescence or cell cycle arrest when stress is placed on a cell, but has recently been shown to regulate cell migration as well. It was determined in this project that p53 could inhibit the formation of both lamellipodia and circular dorsal ruffles. It was also shown that this could occur directly through an inhibition of the GTPase Rac. Previous studies have shown that p53 can upregulate caldesmon, a protein which is known to bind to and stabilize actin filaments while inhibiting Arp2/3-mediated branching. It was confirmed that p53 could upregulate caldesmon, and that caldesmon could inhibit the formation of lamellipodia and circular dorsal ruffles. The phosphorylation of caldesmon by p21-associated kinase (PAK) or extracellular signal-related kinase (Erk) was shown to effectively reverse the ability of caldesmon to inhibit these structures. The role of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was also studied with regards to this signalling pathway. PTEN was shown to inhibit lamellipodia and circular dorsal ruffles through its lipid phosphatase activity. It was concluded that p53 can inhibit the formation of lamellipodia and circular dorsal ruffles in vascular SMC, and that this occurs through Rac, caldesmon and PTEN.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell size control and mitotic timing in Schizosaccharomyces pombe is coupled to the environment through several signal transduction pathways that include stress response, checkpoint and nutritional status impinging on Cdc25 tyrosine phosphatase and Wee1 tyrosine kinase. These in turn regulate Cdc2 (Cdk1) activity and through a double feedback loop, further activates Cdc25 on 12 possible phosphorylation sites as well as inhibiting Wee1. Phosphomutants of the T89 Cdc2 phosphorylation site on Cdc25, one with a glutamate substitution (T89E) which is known to phosphomimetically activate proteins and an alanine substitution (T89A), which is known to block phosphorylation, exhibit a small steady-state cell size (semi-wee phenotype), a known hallmark for aberrant mitotic control. To determine whether the T89 phosphorylation site plays an integral role in mitotic timing, the phosphomutants were subjected to nitrogen shifts to analyze their transient response in the context of nutritional control. Results for both up and downshifts were replicated for the T89E phosphomutant, however, for the T89A phosphomutant, only a nutritional downshift has been completed so far. We found that the steady-state cell size of both phosphomutants was significantly smaller than the wild-type and in the context of nutritional control. Furthermore, the constitutively activated T89E phosphomutant exhibits residual mitotic entry, whereas the wild-type undergoes a complete mitotic suppression with mitotic recovery also occurring earlier than the wild-type. In response to downshifts, both phosphomutants exhibited an identical response to the wild-type. Further characterization of the other Cdc2 phosphorylation sites on Cdc25 are required before conclusions can be drawn, however T89 remains a strong candidate for being important in activating Cdc25.